Реагентная очистка сточных вод от ионов тяжелых металлов в гальваническом производстве

30 Декабрь 2016
 30 декабря, 2016
Категория: Статьи

1. Методы очистки сточных вод

Очистка сточных вод от ионов тяжелых металлов осуществляется путем перевода ионов тяжелых металлов в малорастворимые соединения (гидроксиды или основные карбонаты) при нейтрализации сточных вод с помощью различных щелочных реагентов (гидроксидов кальция, натрия, магния, оксидов кальция, карбонатов натрия, кальция, магния). В табл. 1 представлены значения pH осаждения гидроксидов металлов и остаточные концентрации ионов металлов в сточной воде.

При нейтрализации кислых сточных вод известковым молоком, содержащим значительное количество известняка, а также растворами соды, некоторые ионы тяжелых металлов (например, цинк, медь и др.) осаждаются в виде соответствующих основных карбонатов. Последние менее растворимы в воде, чем соответствующие гидроксиды, поэтому при образовании основных карбонатов происходит более полный переход ионов тяжелых металлов в малорастворимую форму. Кроме того, основные карбонаты большинства металлов начинают осаждаться при более низких значениях pH, чем соответствующие гидроксиды.

Таблица 1

Значения величины pH осаждения гидроксидов металлов и остаточная концентрация ионов металлов

Формула

гидро­

ксида

Величина pH начала осаждения при исходной концентрации осаждаемого иона 0,01 М Величина pH полного осаждения (остаточная концентрация менее 10-5 М) Величина pH начала раство­рения Остаточная концентрация иона металла, наблюдаемая на практике при pH 8,5-9,0, мг/л
Fe(OH)2 7,5 9,7 13,5 0,3-1,0
Fe(OH)3 2,3 4,1 14,0 0,3-0,5
Zn(OH)2 6,4 8,0 10,5 0,1-0,05
Сг(ОН)з 4,9 6,8 12,0 0,1-0,05
Ni(OH)2 7,7 9,5-10,0 0,25-0,75
Al(OH)3 4,0 5,2 7,8 0,1-0,5
Cd(OH)2 8,2 9,7-10,5 2,5
Cu(OH)2 5,5 8,0-10,0 0,1-0,15
Mn(OH)2 8,8 10,4 14,0 1,8-2,0

Практикой очистки сточных вод установлено также, что при совместном осаждении гидроксидов двух или нескольких металлов при одной и той же величине pH достигаются лучшие результаты, чем при раздельном осаждении каждого из металлов. При локальном обезвреживании кадмий-, никель-, цинксодержащих потоков в качестве щелочного реагента рекомендуется использовать известь (лучше третьего сорта, содержащую СаСОз). При этом расход извести составляет на 1 весовую часть(в.ч.) кадмия – 0,5 в.ч. СаО, никеля – 0,8 в.ч. СаО, цинка – 1,2 в.ч. СаО. На рис.1 представлена принципиальная схема реагентной очистки сточных вод от ионов тяжелых металлов. При объемах сточных вод до 30 м3/ч обычно рекомендуется периодическая схема очистки, а при больших – смешанная или непрерывная.

2. Организация отстойников

Осаждение образующихся в процессе реагентной обработки нерастворимых соединений осуществляется в отстойниках (предпочтительно вертикальных с нисходяще-восходящим движением воды, можно в тонкослойных полочных отстойниках). Число отстойников принимается не менее двух, оба рабочие. Продолжительность отстаивания составляет не менее 2-х часов.

Для ускорения осветления нейтрализованных сточных вод рекомендуется добавлять к ним синтетический флокулянт – полиакриламид (в виде 0,1 %-ного раствора) в количестве 2-5 г на 1 м3 сточных вод в зависимости от содержания ионов металлов (чем меньше суммарная концентрация ионов металлов, тем больше доза флокулянта). Добавление полиакриламида к сточным водам рекомендуется проводить перед их поступлением в отстойник (после их выхода из камеры реакции).

Влажность осадка после отстойников 98-99,5%. Для снижения влажности осадка рекомендуется дополнительное отстаивание в шламоуплотнителе в течение 3-5 суток. Влажность осадка после шламоуплопгнителя 95-97%. Осадок из шламоуплотнителя подается на узел обезвоживания (вакуум- фильтрация, фильтр-прессование, центрифугирование). Влажность осадка после вакуум-фильтра типа БОУ и БсхОУ составляет 80-85%, после центрифуги типа ОГШ – 72-79%, после фильтр-пресса типа ФПАКМ – 65-70%.

В отдельных случаях перед, сбросом очищенных сточных вод в канализацию или при последующем их обессоливании методами ионного обмена или электродиализа требуется снижение концентрации взвешенных веществ в очищенной воде. Осветление стока в данном случае осуществляется путем фильтрования через фильтры с песчаной или двухслойной загрузкой (песок, керамзит), а также через фильтры с плавающей загрузкой типа ФПЗ.

Рис.1. Принципиальная схема реагентной очистки сточных вод от ионов тяжелых
металлов: 1-реактор-нейтрализатор кисло-щелочных стоков, 2-дозатор щелочного
агента, 3-дозатор флокулянта, 4-дозатор раствора кислоты, 5-отстойник, 6-механический фильтр, 7-насос, 8-нейтрализатор очищенной воды.

3. Метод ферритизации

В последнее время находит практическое применение ферритный метод (метод ферритизации), как модификация реагентного метода очистки сточных вод от ионов тяжелых металлов с помощью железосодержащих реагентов.

Железо, будучи элементом побочной подгруппы VIII группы, проявляет значительную химическую активность, обладает высокой приверженностью к аллотропическим модификациям и пространственно-фазовым превращениям. Железо образует множество соединений как стехиометрического состава, так и бертоллидного характера. Последние играют важную роль при проявлении железосодержащими реагентами коагулирующего и адсорбционного действия.

Очистка сточных вод методом ферритизации заключается в сорбции примесей (в т.ч. ионов тяжелых металлов) магнитными гидроокисями железа, образовании ферритов с последующей топохимической реакцией захвата сорбированных веществ кристаллической решеткой феррита. Ферриты – это производные гипотетической железистой кислоты HFeCh, в которой ионы водорода замещены ионами металлов.

Основным реагентом ферритизационной обработки сточных вод служит гидрат сернокислого закисного железа FeS04-7H20, являющийся отходом производства двуокиси титана или травления стали.

При добавлении щелочи к водному раствору железного купороса, начиная с pH 7,7, образуется хлопьевидный желтовато-­белый осадок. Под воздействием воздуха он приобретает коричневатый оттенок, обусловленный возникновением аддукта Fe(OH)2-Fe(OH)3. Последний чрезвычайно активен, может превращаться в зависимости от состава раствора, pH и температуры в следующие соединения:

  • парамагнитный метагидроксид FeO(OH) со структурой минерала гётита;
  • ферромагнитный метагидроксид FeO(OH) со структурой минерала лепидокрокита;
  • неферромагнитный метагидроксид FeO(OH);
  • черно-коричневый магнетит Fe3О4;
  • ферромагнитный ржаво-коричневый полигидрат Fe2О3nH2O

Названные соединения, формируясь индивидуально и в смеси, отражают многообразие, сложность реакций, лежащих в основе их образования. При низких концентрациях железа в широком диапазоне pH организуются соединения с выраженными магнитными свойствами. С увеличением концентрации железа возрастают требования к pH, при котором оптимально проходят процессы           ферритообразования: возникновения зародышей

магнетита – феррита железа FeII(FeIIIО2)2 по реакции:

Fe(OH)3– + 2Fe(OH)4– -> Fe304 + 4Н20 + ЗОН-, или в общем виде:

FeS04 + 12NaOH + О2 -> 2Fe3О4 + 6Н2О + 6Na24, а также образование ферритов цветных металлов MeFe2О4:

4. Образование ферритов

Образование ферритов – сложный процесс, включающий реакции твердофазного координирования и кристаллографического структурирования.

Возникающие при этом твердые комплексные соединения имеют туннельную структуру, благоприятствующую дополнительному клатратированию тяжелых металлов.

Повышение температуры нивелирует влияние pH, в результате при температуре 80 °С область ферритообразования в районе повышенных концентраций железа (а также ионов тяжелых металлов) значительно расширяется. Необходимо отметить, что наблюдаемое расширение более заметно при пониженной pH, когда возрастает роль твердофазных превращений.

Способность металлов к совместному осаждению с гидрозакисью железа и ферритообразованию усиливается в ряду Cd < Zn < Со < Ni < Си. Кадмий и цинк проявляют малую активность в формировании ферромагнитных композиций, поэтому они менее всего клатратируются при ферритном обезвреживании сточных вод. Степень очистки с образованием магнитных продуктов повышается при обработке стоков, содержащих одновременно ионы нескольких металлов по сравнению с обработкой индивидуальных стоков, а также при повышении pH.

Наивысшую активность в ферритной очистке проявляет медь. При рН>9 она эффективно удаляется в виде кристаллического продукта с высокой магнитной восприимчивостью.

Никель и кобальт по способности к ферритной очистке занимают промежуточное положение между медью и цинком. Высокий эффект очистки достигается при рН>10, а ферромагнитный характер формируемых осадков обеспечивается лишь при дозировке железа в очищаемую воду в количестве до 1 г/л.

5. Способы ферритизации

Очистку сточных вод от ионов тяжелых металлов методом ферритизации можно проводить двумя способами.

Первый способ заключается в добавлении в сборник со сточными водами железного купороса, едкого натра (в виде 40 % водного раствора) и азотнокислого натрия: при суммарной концентрации ионов тяжелых металлов 30 мг/л в стоки дозируются 450 г/м3 железного купороса (90 г-ион/м3 в пересчете на железо), 322 г/м3 раствора каустика и 45,6 г/м3 нитрата натрия. После этого сточная вода нагревается острым паром до 60 °С (100 кг пара на 1 м3 стоков) и выдерживается при барботировании воздухом в течение 1 часа (расход воздуха 100 м33 стоков в час). Затем стоки сбрасываются в отстойник. Время выдержки в отстойнике 15-20 мин. После чего осветленная часть стоков направляется на фильтрацию и далее в хозяйственно-бытовую канализацию.

По второму способу очистка стоков проводится в две стадии. На первой стадии формируется железосодержащая суспензия таким образом, чтобы она обладала развитой поверхностью, высокой химической активностью и адсорбционной способностью. На приготовление 1 м3 железосодержащей суспензии необходимо 208,5 кг железного купороса, 60 кг едкого натра и 21,3 кг азотнокислого натрия. Время выдержки составляет 20 минут. Чем дольше суспензия выдерживается до прибавления её в очищаемые стоки, тем завершеннее, полнее реализуется способность её к ферритообразованию. На второй стадии сформированная суспензия дозируется в очищаемые сточные воды.

Специфику ферритизационной обработки иногда связывают с адсорбционными явлениями, обусловленными дефектами кристаллической решетки ферритов. Для полноты реализации адсорбционных явлений осуществляют предварительный специальный синтез активированных ферритов, предусматривающий обработку нитритами гидроокисей двух- и трехвалентного железа, взятых в определенном соотношении. Полученные таким образом ферриты хорошо сорбируют ионы хрома, кадмия, свинца, меди, никеля, кобальта, ртути, марганца и бериллия, они имеют емкость по тяжелым металлам в 1000 – 10000 раз большую, чем магнетит.

При ферритной обработке сточных вод, особенно первым способом, происходящие процессы гидратообразования железа способствуют коагуляционной очистке тонкодиспергированных взвесей и эмульгированных загрязнений за счет формирования железосодержащих мицелл, способных к некоторым реакциям включения.

6. Преимущества ферритной очистки

Главными преимуществами ферритной очистки стоков являются:

  • возможность одновременного удаления различных ионов тяжелых металлов в одну стадию;
  • ионы тяжелых металлов клатратируются в виде кристаллических не выщелачиваемых продуктов;
  • наряду с растворенными тяжелыми металлами эффективно удаляются диспергированные взвеси и эмульгированные загрязнения;
  • процесс не чувствителен к влиянию других солей, которые могут присутствовать в стоках в больших концентрациях.

Аппаратурное оформление ферритной очистки отличается простотой, в основе его лежит принцип магнитного осаждения продуктов клатратирования загрязнений (в т.ч. ионов тяжелых металлов). Главным рабочим узлом установки ферритной очистки является резервуар-накопитель, снабженный мешалкой и магнитными клапанами для спуска обработанной воды.

_